Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small ; : e2400963, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686696

RESUMO

Biomolecule-functionalized nanoparticles represent a type of promising biomaterials in biomedical applications owing to their excellent biocompatibility and versatility. DNA-based reactions on nanoparticles have enabled emerging applications including intelligent biosensors, drug delivery, and biomimetic devices. Among the reactions, strand hybridization is the critical step to control the sensitivity and specificity of biosensing, and the efficiency of drug delivery. However, a comprehensive understanding of DNA hybridization on nanoparticles is still lacking, which may differ from the process in homogeneous solutions. To address this limitation, coarse-grained model-based molecular dynamic simulation is harnessed to disclose the critical factors involved in intermolecular hybridization. Based on simulation guidance, DNA walker-based smart theranostic platform (DWTP) based on "on-particle" hybridization is developed, showing excellent consistency with simulation. DWTP is successfully applied for highly sensitive miRNA 21 detection and tumor-specific miRNA 21 imaging, driven by tumor-endogenous APE 1 enzyme. It enables the precise release of antisense oligonucleotide triggered by tumor-endogenous dual-switch miRNA 21 and APE 1, facilitating effective gene silencing therapy with high biosafety. The simulation of "on-particle" DNA hybridization has improved the corresponding biosensing performance and the release efficiency of therapeutic agents, representing a conceptually new approach for DNA-based device design.

2.
ACS Appl Mater Interfaces ; 15(40): 47415-47424, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37773989

RESUMO

Signal amplification methods based on DNA molecular interactions are promising tools for detecting various biomarkers in low abundance. The entropy-driven circuit (EDC), as an enzyme-free signal amplification method, has been used in detecting and imaging a variety of biomarkers. The localization strategy can effectively increase the local concentration of the DNA reaction modules to improve the signal amplification effect. However, the localization strategy may also amplify the leak reaction of the EDC, and effective signal amplification can be limited by the unclear structure-function relationship. Herein, we utilized locked nucleic acid (LNA) modification to enhance the stability of the localized entropy-driven circuit (LEDC), which suppressed a 94.6% leak signal. The coarse-grained model molecular simulation was used to guide the structure design of the LEDC, and the influence of critical factors such as the localized distance and spacer length was analyzed at the molecular level to obtain the best reaction performance. The sensitivities of miR-21 and miR-141 detected by a simulation-guided optimal LEDC probe were 17.45 and 65 pM, 1345 and 521 times higher than free-EDC, respectively. The LEDC was further employed for the fluorescence imaging of miRNA in cancer cells, showing excellent specificity and sensitivity. This work utilizes LNA and molecular simulations to comprehensively improve the performance of a localized DNA signal amplification circuit, providing an advanced DNA probe design strategy for biosensing and imaging as well as valuable information for the designers of DNA-based probes.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Entropia , DNA/química , Sondas de DNA/química , Biomarcadores , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos
3.
Small ; 18(49): e2205191, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36287076

RESUMO

DNA-based nanodevices equipped with localized modules have been promising probes for biomarker detection. Such devices heavily rely on the intramolecular hybridization reaction. However, there is a lack of mechanistic insights into this reaction that limits the sensing speed and sensitivity. A coarse-grained model is utilized to simulate the intramolecular hybridization of localized DNA circuits (LDCs) not only optimizing the performance, but also providing mechanistic insights into the hybridization reaction. The simulation guided-LDCs enable the detection of multiple biomarkers with high sensitivity and rapid speed showing good consistency with the simulation. Fluorescence assays demonstrate that the simulation-guided LDC shows an enhanced sensitivity up to 9.3 times higher than that of the same probes without localization. The detection limits of ATP, miRNA, and APE1 reach 0.14 mM, 0.68 pM, and 0.0074 U mL-1 , respectively. The selected LDC is operated in live cells with good success in simultaneously detecting the biomarkers and discriminating between cancer cells and normal cells. LDC is successfully applied to detect the biomarkers in cancer tissues from patients, allowing the discrimination of cancer/adjacent/normal tissues. This work herein presents a design workflow for DNA nanodevices holding great potential for expanding the applications of DNA nanotechnology in diagnostics and therapeutics.


Assuntos
Biomarcadores Tumorais , Neoplasias , Humanos , Nanotecnologia , DNA , Neoplasias/diagnóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...